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Natural convection in a sloping porous layer 
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This paper describes an experimental and theoretical study of thermal convec- 
tion in a sloping porous layer. The saturated layer is bounded by two parallel 
impermeable planes maintained a t  different temperatures. Several types of 
flows were observed: a unicellular movement and a juxtaposition of longitudinal 
coils or of polyhedral cells. 

A theoretical analysis has been made using the standard bases of the linear 
theory of stability and by taking into account some assumptions suggested by 
experimental observations. The critical conditions for the transition between 
unicellular and polycellular flows has been determined. For flow in longitudinal 
coils or with polyhedral cells the average heat transfer depends mainly on the 
filtration Rayleigh number and on the slope of the layer. 

The experimental study was made in a Rayleigh number range 0-800 and for 
various slopes (0-90"). For both the transition criterion and the heat transfer, a 
good fit was observed between the experimental and theoretical results. For 
maximum slope, i.e. go", a correlation which connects the Nusselt number with 
both the Rayleigh number and the vertical extent of the model is proposed. 

1. Introduction 
Thermal convection in porous media is of great importance in numerous prac- 

tical fields such as chemical engineering, geothermal activities and some oil 
recovery techniques. For the case of a homogeneous horizontal layer a number of 
studies have been published. This paper is devoted to a study of thermal convec- 
tion in a sloping porous layer. The layer is bounded by two impermeable planes 
maintained at different temperatures and its lateral extent is quite large compared 
with its thickness. In  this study, our attention has mainly been focused on theo- 
retical and experimental approaches to both the convective flow organization 
and mean heat transfer. 

From the phenomenological standpoint there is a fairly close analogy between 
convective motions in a porous medium and in a fluid layer. Concerning inclined 
fluid layers, some recent papers give theoretical and experimental information 
regarding the fluid motions (Hart 1971a, 6 ;  Unny 1972). Hart has observed two 
types of convective motions: a unicellular motion and a helical coil regime. As 
is indicated in the present paper, these types of flow have also been observed in a 
porous layer. 
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2. Thermal convection in porous media 
In  a porous medium the buoyancy force which causes convection may be put 

in a dimensionless form by the use of a filtration Rayleigh number Ra* which is 
slightly different from the standard Rayleigh number defined in a fluid alone. 
For a porous layer bounded by equidistant isothermal surfaces this number is 
written as 

where g is the gravitational acceleration, a, ( P C ) ~  and v are respectively the 
thermal expansion coefficient, the heat capacity and kinematic viscosity of the 
fluid, K is the permeability, A* the thermal conductivity of the porous medium 
saturated with the motionless fluid and AT the temperature difference between 
the two surfaces which are separated by a distance H .  

The main consequence of convective motion is to increase the mean heat trans- 
fer. This can be expressed by a Nusselt number 

NU,* = h,/h* = $H/(A*AT), (2) 

$ being the heat flow density due to both conduction and convection between 
isothermal planes, and A, the overall thermal conductivity coefficient of the layer 
when convection occurs. 

The results available for the case of a horizontal layer mainly concern the con- 
vection criterion, the convective flow pattern and the mean heat transfer. They 
have been obtained using a linear theory, some variational techniques (West- 
brook 1969), extensive experimentation and numerical computations. 

The criterion for the onset of convection in a horizontal layer has been com- 
puted for different boundary conditions (Nield 1968) but theoretical and experi- 
mental work is mainly devoted to the case of impermeable isothermal boundaries. 
In  this case the standard criterion for the onset of natural convection, i.e. 
Ra* 2 4n2 (Horton & Rogers 1945; Lapwood 1948), is well confirmed by the 
experiments. 

If Ra* is higher than 4n2 but not too large, a stable convective state exists. It 
is characterized by adjacent polyhedral cells, which have been visualized for a 
layer with a free upper surface (Bories 1970a, b) ,  see figure 1 (plate 1). The size of 
the convective cells may be described in dimensionless form and, for instance, if 
the convective motion looks like two-dimensional rolIs, the reduced size of each 
roll EIH, where E is the width of the roll, is equal to one for Ra* close to 4712. 

Another convective state has been found for Ra* higher than a critical value 
which lies in the range 240-280 depending on the porous medium (Combarnous 
1970a, b) .  This state, whichis called the fluctuating convective state, corresponds 
to continuous creation and disappearance of convective cells, even in the thermal 
steady state (Caltagirone, Cloupeau & Combarnous 1971), see figure 2. 

Concerning mean heat transfer due to convection, whereas a standard mathe- 
matical study leads, as for the case of a fluid layer, to a unique relationship 
between the Rayleigh and Nusselt numbers, experimental data (Schneider1963; 
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FIGURE 2. Experimental observation by the Christiansen effect of the evolution of two- 
dimensional convective rolls in a thermal steady state for the fluctuating convective state 
(Caltagirone, Cloupeau & Combarnous 1971). (t4 - t ,  is about 1 hour.) 

Combarnous 1970a) have shown that the mean heat transfer does not depend 
solely on the Rayleigh number but also on the thermal characteristics of the 
constituting phases, the solid matrix and the saturating fluid. This is probably 
due to  the invalidity of the assumption of an infinite heat-transfer coefficient 
between fluid and solid phases, an assumption which is generally made in the 
mathematical formulation of the heat transfer (equation (5)). 

In  the case of a sloping porous layer, published studies are not very numerous. 
Excluding some numerical works (Holst 1970; Vlasuk 1972) and a partial experi- 

5 FLM 57 
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mental investigation (Kaneko 1972) in a sloping box having all dimensions of 
the same order of magnitude, the only published results to our knowledge con- 
cern the vertical layer (Schneider 1963; Chan, Ivey & Barryl970; Klarsfeld 1970). 

3. Mathematical formulation 
The saturated porous medium is contained in a rectangular model. q5 is the angle 

of the layer with respect to the horizontal position and H ,  L and W are respec- 
tively the thickness, length and width of the model (figure 3). T,is the temperature 
of the upper plane and T, = TI + AT that of the lower plane. Lateral boundaries 
are rigid and insulating. Furthermore, in order to reduce the effect of lateral 
boundaries, the ratios L/H and W / H  are much larger than 1. 

With the assumptions and approximations which are frequently used for 
thermal convection in a homogeneous porous medium saturated with an in- 
compressible fluid, the general equations may be written as (Wooding 1957): 

eaplat + div (pV) = 0, (3) 
v iav 1 

at p 
_- = --gradp--V+-f, 

K (4) 

with g = (-gsinq5,0, -gcosq5), 

(pc)* aT/at = A* div (grad T )  - div [ ( P C ) ~  V T ] ,  

P = P d l -  4 T  - Trn)I, 

(5) 

(6) 
where e is the porosity of the porous medium, V the filtration velocity, T the 
temperature, p the pressure and p the fluid density. T, is a reference temperature 
level at  which the density equals ,om. 

Dimensional analysis derived on the basis of the set of equations (3)-( 6) leads 
to the following dimensionless quantities: 

With the standard Boussinesq hypothesis and assuming H /  W w 0 the thermal 
convection steady state may be described, for a given porous medium, through 
the consideration of only the numbers H/L, 4 and Ra*. Then all the dimension- 
less quantities characterizing thermal convection and especially mean heat trans- 
fer may be expressed in terms of these numbers, e.g. 

Nu* = f(Ra*, HIL, 4). (8) 

4. Description of experiments 
Experiments were performed for wide ranges of Ra* (0-800) and slopes (0-90") 

in a cell containing a saturated porous medium and with following dimensions: 
L = 66.3 cm, W = 46.3 cm and H = 5.0 em. The isothermal boundaries at x = 0, 
H are formed by two metal plates maintained a t  constant temperatures, in a 
thermal steady state. The upper plate is water cooled to TI and the lower one is 
warmed b j  electric resistors. A s  long as the slope of the layer is not too high no 
difficulty is encountered in maintaining the lower boundary isothermal. However, 
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FIGURE 3. The porous layer. 

for q5 higher than 45O, a temperature gradient does appear along Ox during the 
experimental runs. This discrepancy from the ideal case is a maximum with a 
vertical layer: for instance, in this case, for Ra* about 150, aT,/8x M 0.12 "Ofcm 
with AT/H = 3.5 "C/cm. 

To ensure good insulation, the lateral sides of the model are made of plastic 
with a mean h M 0.18 W/m "C and a thickness of 6 cm. The lower part of the cell 
is carefully designed to prevent heat losses (mean h of the insulation screen 
w 0.02 W/m "C). 

The temperatures of the isothermal boundaries are measured by thermocouples 
set in grooves respectively at  x = BL, x = &L and x = SL. An intensive pattern 
of thermocouples is set in the porous medium so as to determine the convective 
currents: thermocouples may be translated along 14 horizontallines 4 cm apart in 
the .plane z = 423, in order to obtain continuous one-dimensional recordings. 

With a uniform temperature equal to TI as the initial condition, a constant 
heat flow is dissipated in the lower plate, whose temperature T, is recorded 
versus time until the steady state is reached. The thermal conductivity A* due 
to conduction alone is measured both on the experimental cell with a downward 
heat flux and in a cylindrical thermal conductivity cell. 

The porous media were made of spherical glass beads with diameters of 5.25, 
4.7 and 3-25 millimetres. De-aerated water has been used as the saturating fluid. 
The permeability required for calculating Ra* was computed from the Kozeny- 
Carman relationship. 

5. Experimental observations on the organization of convective 
movements 

Because of the mixture of approximations based on experimental results 
and other simplifying assumptions used in the analysis, in presenting this paper 
we shall divide the experimental resultsinto two parts. The first, which is devoted 

5-2 
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to the organization of convective movements, and concerns experiments per- 
formed in a Rayleigh number range 0-250, yields important results used as 
assumptions in the theoretical development. The second part, dealing with mean 
heat transfer, is presented after the theoretical analysis. 

As is well known, in a vertical layer, when the Rayleigh number is not too 
high the convective motion is unicellular and two-dimensional. A hot upward 
current flows along the hot plate and the downward current goes down along the 
cold plate. In  a sloping porous medium, for a Rayleigh number lower than a 
critical value Ra;, which depends on $, the temperatures measured at  z = &H 
along lines parallel to Oy and not too close to the upper and lower boundaries of 
the experimental model are quite uniform; in addition, along these lines the 
temperature is independent of x (figure 4 (a ) ) .  This uniformity of the temperature 
for z = +H, in the central part of the model, has only been observed in a very 
homogeneous porous layer and indicates the existence of a unicellular unper- 
turbed motion (figure 6 (a)) .  

When Ra* is higher than RaZ the temperature distribution is not regular and 
several cases have to be distinguished. 

(a )  For q5 lower than about 15") the temperature distribution in the layer is 
analogous to that observed in a horizontal layer; i.e. the convective movements 
take the form of polyhedral cells. The limit q5 = 15" is not very strictly defined; 
as was mentioned in Q 4, it has been observed for thermal steady states obtained 
with a uniform temperature distribution in the whole layer as the initial state for 
the experimental runs. 

( b )  For higher values of $, temperature profiles recorded for z = +H along 
lines parallel to Oy for several values of x (x /L  E [0.1-0.9]) are periodic, with the 
same wavelength and no phase shifting (figures 4 ( b )  and 5 ) .  Concerning the ampli- 
tudes, we observed that these are independent of x in the central zone of the 
model for 15" 5 $ 5 50" (figures 5 (a )  and ( b ) ) .  When $ increases, the influences, 
even in the central zone of the layer, of the non-uniformity of the tempera- 
ture in the hot plate as well as of the end effects are not negligible and the 
amplitudes measured on the periodic temperature profiles are functions of x 
(figure 5 (c)). 

(c) When the layer is quite vertical the convective motion tends to be uni- 
cellular. The $ value for transition between the periodic-temperature-profile 
state and the unicellular motion is strongly correlated with the extent LIH of the 
layer and we have observed periodic profiles, very smoothed by the influence of 
end effects, for $ up to 80". 

We may conclude from these observations that, for the slopes and Ra* values 
(0-250) we have studied, convective movements take three different forms. 
For low values of Ra* or for nearly vertical layers the movement is unicellular. 
For higher Ra" values, (a)  for low $, the convective motions look like these 
observed in the horizontal layer and ( b )  for $ > z 15" a polycellular motion exists, 
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FIGURE 4. Temperature profiles measured on z = +H along lines parallel to Oy for q5 = 30' 
and (a )  Raxcos$ = 20 < 4f12 and ( b )  Ra*cos$ = 150 > 47~'. 0 (T'-T'l)/(!l'2-T'l). A, 
x/L = 0.25; 0 ,  x/L = 0.50; m, x/L = 0.75. ( c )  Map of temperature distribution in the 
layer for z = +H with 46 = 30" and Ra* cos $ = 150. 
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FIGURE 5. Temperature profiles measured on z = +H along lines parallel to Oy for (a) 
$ = 30°, Ra* cos C$ w 120, ( b )  C$ = 45O, Ra* cos q5 x 150 and (c) $ = 60°, Ra* Go<$ c 115. 

v 0 0 

(c) x /L  0.15 0.40 - 0.47 0.51 0.58 0.82 
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and is characterized by adjacent coils climbing up along the slope direction 
(figure 6 (b ) ) .  This motion is analogous to the one described by Hart in the fluid 
layer. 

6. Theoretical description of the observations 
This paragraph is mainly concerned with the longitudinal coil regime. For the 

study of both the criterion for the occurrence of this regime and mean heat 
transfer, we have analysed only the case of the inh i t e  layer ( H / L ,  H/W = 0) .  
Concerning the comparison of this ideal case with the experimental conditions 
it must be emphasized that the existence of a solid matrix in the layer reduces the 
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Y 0 
FIGURE 6. The two types of motion for 15' < SOo: (a) the unicellular convective flow 

for Ra* cos q5 < 4n2, ( b )  the longitudinal coil regime. 

influence of the end effects on the flow pattern. So the values H I L  = 0.075 
and HIW = 0.11 of the experimental device, which might seem too large for a 
study in a fluid layer, are small enough in the case of tt porous medium. 

Unicellular motion 

The unicellular motion is two-dimensional (vo = 0 and aT/ay = 0). In this case 
the equation set (3)-( 6) is completed by the following boundary conditions: 

w o =  0, T = T,= T,+AT for x =  0, 
wo = 0, T = TI for x = H ,  (9) i uo = 0, a q a x  = o for x = O,L.  
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The equation of motion and the energy equation yield 

uo = p,gsin r$ [1 - a(T - T,)], 
,u ax 

with T,, = &(TI + T,) and ,u = vp. In a section x = constant, we may consider that 

wo = 0, aw,,laz = 0. (13)  

au,lax = 0, uo = u o ( ~ ) .  (141 

Then from the continuity equation 

However, from the experimental observations we know that aT/ax N 0 
(see figure 4). So the energy equation may be simplified to 

As for a vertical porous layer, for low values of the Rayleigh number, the 
temperature profile along Oz is the same as the one resulting from pure con- 

(16)  
duction: T = T, - ATz/H.  

By taking the derivatives of the equations of motion (10) and (1  1) with respect 
to z and x. we obtain 

a2ppZax = 0, 

and hence au,(z)/&. Then, as u,, = 0 for z = 4H. 

K 
u ~ ( z )  = 

Longitudinal coils 
The experimental study shows that, in a sloping layer with 15" 5 4 5 80°, when 
the Rayleigh number is increased the unicellular convective movement is replaced 
by a polycellular flow made up of a juxtaposition of longitudinal coils. Starting 
from the unicellular movement we look for the criterion for the onset of a poly- 
cellular movement using the standard linear theory approach. The coils are 
characterized by transverse perturbations from the unicellular movement. 

Let V', p' and 0 be the velocity, pressure and temperature perturbations from 
the initial movement defined by distributions Vo,po and To which are solutions 
of (3)-(6). The variables in the new perturbed state, i.e. 

V =  Vo+V', p =po+p', T = To+B, (20) 
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where V = (u,, + u', vo + v', w, + w'), obey (3)-( 6) .  If the Boussinesq assumption is 
taken into account the perturbation equation set is then 

At this stage of the computation we use a simplifying assumption which is 
suggested by the experimental observations. Indeed, we have observed that in 
longitudinal-coil flow the temperature is uniform along an) line parallel to Ox, i.e. 

aslax = 0. (26) 

Then by using this assumption and eliminating w' and p' from (24) and ( 2 5 )  
we obtain for the state of marginal stability (a/at = 0) 

Kp,gaAT a28 Ra*'cos $ a20 
~2 a p  

- v4e = cos$- = 
PXH aY2 

(27) 

with x = 
existence of a multiplying factor cos $. 

This equation differs from that for a horizontal layer by the 

We now look for a solution of (27) of the form 

0 = e(z)eaV, ( 2 8 )  

which is suggested by the experimental results. Then (27) is reduced to the 
dimensionless differential equation 

(D2 - 12)2 0 = Ra* cos + 128, (29 1 
with D2 = d2/dt2 and 6 = z /H.  

ditions. For the case we are concerned with here these conditions are 
Hence we can find the function e(z) by taking into account the boundary con- 

e = 0,  W' = (D~-P)o = o for 5 = o, i .  
Then we obtain the values of both the stability criterion and the perturbation 

wavelength. For instance, for the first mode of instability the criterion of 
existence is Ra* cos $ 2 4n2 and the wavelength of perturbation 2n/l= 2H. 

The criterion for transition between the two flow regimes is then defined as 

Ra* cos $ = 4n2. ( 30) 

This criterion, which we have derived only for the longitudinal-coil regime 
(aT/ax = 0), may be used for the occurrence of polyhedral convection, observed 
for $ < 15". In  this case the assumption at?/ax = 0 is not valid but the term 
uo aO/lax in (25)  is still negligible because of the small value of q5 [equation (1  9)]. 
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Considering (29), we also note that the only dimensionless quantity appearing 
in this equation is Ra* cos q5. This shows that, for longitudinal-coil flow, all 
characteristic dimensionless quantities governing convection in a sloping porous 
layer of great extent depend solely on Ra* cos q5, as long as the linear theory 
approximations are valid. 

Relation between Nu”, Ra* and q5 
In a horizontal porous layer, by using the Malkus power integral method, an 
analytical formulation of heat transfer has been developed (Aziz & Combarnous 
1970; Bories 1970a, b)  describing the Nusselt number as the sum of a series in 
which each term is associated with a different instability mode: 

m 
I 

NU = 1 + C Ic, ( 1  - 4n2n2/Ra*), 
n=l 

with 
0 if Ra* < 4n2n2, 

2 if Ra” 2 4n2n2. 

The conclusion that we previously reached regarding the influence of the para- 
meter Ru* cos q5 induced us to look for a relationship similar to (31) for a sloping 
layer, in which Ra* is replaced by Ra* cos 4. 

The Malkus technique starts with the integration, over the whole layer, of the 
energy equation and equations of motion with the terms of each equation multi- 
plied respectively by the perturbations of the temperature and velocity distribu- 
tions, 8 and V‘. The integral relationships are then 

where the angled brackets indicate an average taken over planes parallel to the 
isothermal boundaries. 

In  order to proceed with the computation we need the values of the perturba- 
tion components. We know the 0 distribution [equation (2S)l and w‘ is computed 
from (25)  and (26). Then the components of the curl of the equation of motion 
and the derivatives with respect to x and y of the continuity equation yield the 
values of u’ and w’: 

u‘ = *sin V o(z)  eib,  (34) 

With the value of u‘ inserted, (33) yields 

gfo” ( ( w ’ ~ )  -t- (w f2 ) )  dz = ga cos q5 (37) 
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As this equation is similar to the equation obtained in the case of a horizontal 
layer, with the exception of the multiplying factor cos q5 on the right-hand side, 
using the same procedure as in Catton (1966), we obtain 

OD 

Nu* = 1 + C. k,[l - 4n2n2/(Ra* cos $)I, (38) 
n= 1 

with 
0 if Ra*cosq5 < 4n2n2, 

2 if Ra"cosq5 2 h a m 2 .  k n =  { 
This result leads to the following conclusion: the comparison between (31) 

and (38) shows that, for a given porous medium, a relation between Nu* and 
Ra* cos #I is possible. 

7. Experimental results on heat transfer 
Xloping layer 

The experimental heat-transfer results have been put in the form of a relation 
between Nu* and Ra* cos q5 (figure 7). These results concern experimental runs 
performed with a slope range 0-60" in a Rayleigh number range 0-800. 

The correlation between Nu* and Ra* cos #I values is quite good. For low values 
of Ra* (Ra* cos q5 < 4n2) the Nusselt number is greater than 1 because of the 
finite extent of the experimental model. However, for Ra* cos q5 > 250 a slight 
divergence is observed with the results obtained for slopes of 45" and 60", and 
is probably due to both the end effects and the existence of a small temperature 
gradient in the hot plate. 

On figure 7 we have also shown the theoretical relationship corresponding to 
equation (38) ; the discrepancy between experimental data and theoretical results 
is very important. We must recall that, as was mentioned in $2, experimental 
information collected in the case of the horizontal porous layer indicates that the 
relationship between Nu* and Ra* depends on the characteristics of the porous 
medium. These two remarks emphasize the differences between thermal convec- 
tion in porous media and in homogeneous fluid layers: indeed in the latter case 
there is no discrepancy between the whole set of experimental results and the 
theoretical relationship (Catton 1966). 

The criterion for transition between the two types of flows which has been found 
seems to  be well defined by relationship (30). This result can be compared with 
some experimental observations made in inclined fluid layers by Hart (1971 a, b ) ,  
see figure 8. Furthermore, the wavelength of the periodic temperature profXes 
observed (figures 4 and 5 )  corresponds to the theoretical wavelength of the per- 
turbations, i.e. 2H, for values of Ra* cos q5 close to 4m2. 

Vertical layer 

We made some experiments on a vertical layer (q5 = 90"). As was previously 
mentioned, in the Rayleigh number range investigated, convective motion is 
unicellular. Some in situ temperature profiles with an appearance similar to those 
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FIGURE 7. Mean heat-transfer results for the whole layer. Experimental data: 0 ,  $ = 7.5"; 
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FIGURE 9. Temperature profiles in a vertical layer along lines parallel to  Oz for various 
Ra* values: (a)  Ra* = 165, ( b )  Ra* = 315 and (c) Ra* = 520. 

computed by Holst (1970)or Chanetal. (1970)wererecorded.Temperatureprofiles 
along horizontal lines corresponding to different x values show that for low values 
of the Rayleigh number (figure 9 (a)) the temperature profiles are not too different 
from these corresponding to the pure conduction state, except at the ends of the 
model. When the Rayleigh number increases we observe the development of 
thermal boundary layers along the plates. In thislast case the centre of the model 
behaves like an isothermal zone (figure 9 (c ) ) .  

The heat-transfer results are very sensitive to the extent H / L  of the model. 
A relation has been found between NU*, Ra* and HIL: 

flu* = 0-245(Ra*)0'625 (H/L)0397. (39) 

This relation includes ow own results and the results published by Schneider 
(1963). It is valid for glass-bead porous media (8 about 0.38) saturated with water 
in a range of Ra* from SO2 to SO3 and for values of H / L  between 0.05 and 0.S5. 
When Ra* = 100, thisrelation can be compared with the numerical computations 
made by Chan et al. (1970) and Vlasuk (1972). 

8. Conclusion 
The theoretical and experimental results presented in this paper concern 

both the organization of the convective movements and the mean heat transfer 
due to convection in a sloping porous layer of large extent. 
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Two main results should be emphasized. 
(if Concerning the convective movements, two different types of flow have 

been observed in a sloping layer for 15" < $ < 80'. When Ra* cos q5 < 40 a 
unicellular two-dimensional movement takes place through the porous medium. 
When Ra* cos $ > 40, convective movements are observed as a juxtaposition 
of longitudinal coils which are parallel to the slope of the layer. 

(ii) Concerning the mean heat transfer, for a wide range of slopes (0-60') and 
in the Rayleigh number range which has been investigated a unique relation 
between Nu* and Ra* cos $ has been found. 

This study has been done in the Groupe d'Etude I.F.P. -1.M.F. sur les Milieux 
Poreux, which is sponsored by the Institut Frangais du PBtrole in Rueil-Malmai- 
son and the Institut de MBcanique des Fluides in Toulouse, which is an ' associated 
laboratory' to C.N.R.S. The authors wish to thank M. L. Monferran, who has 
been in charge of the experimental work, and M J. Y. Jaffrennou. 
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FIGURE 1.  Convective polyhedral cells in a horizontal porous layer with a free 
upper boundary (Bories 1970a, b) .  
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